Batch-Sequential Algorithm for Neural Networks Trained with Entropic Criteria
نویسندگان
چکیده
The use of entropy as a cost function in the neural network learning phase usually implies that, in the back-propagation algorithm, the training is done in batch mode. Apart from the higher complexity of the algorithm in batch mode, we know that this approach has some limitations over the sequential mode. In this paper we present a way of combining both modes when using entropic criteria. We present some experiments that validates the proposed method and we also show some comparisons of this proposed method with the single batch mode algorithm.
منابع مشابه
Data Classification with Neural Networks and Entropic Criteria
The concept of entropy and related measures has been applied in learning systems since the 1980s. Several researchers have applied entropic concepts to independent component analysis and blind source separation. Several previous works that use entropy and mutual information in neural networks are basically related to prediction and regression problems. In this thesis we use entropy in two diffe...
متن کاملTensor-Based Backpropagation in Neural Networks with Non-Sequential Input
Neural networks have been able to achieve groundbreaking accuracy at tasks conventionally considered only doable by humans. Using stochastic gradient descent, optimization in many dimensions is made possible, albeit at a relatively high computational cost. By splitting training data into batches, networks can be distributed and trained vastly more efficiently and with minimal accuracy loss. We ...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کامل